人工ai明星造梦网站有哪些,人工AI明星造梦网站
DouJia 2025-07-16 21:30 5 浏览
2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生人工ai明星造梦网站了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,人工AI明星造梦网站你将会对人工智能和机器学习有一个基本的认知。
资源目录:
□ 知名研究者
□ 研究机构
□ 视频课程
□ *******
□ 博客
□ 媒体作家
□ 书籍
□ Quora主题栏
□ Github库
□ 播客
□ 实事通讯媒体
□ 会议
□ 论文
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,****链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
■Sebastian Thrun
个人官网:
https://robots.stanford.edu/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
■Yann LeCun
个人官网:
https://yann.lecun.com/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Nando de Freitas
个人官网:
https://www.cs.ubc.ca/~nando/
*********:
https://en.*********.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Andrew Ng
个人官网:
https://www.andrewng.org/
*********:
https://en.*********.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Daphne Koller
个人官网:
https://ai.stanford.edu/users/koller/
*********:
https://en.*********.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
■Adam Coates
个人官网:
https://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Jürgen Schmidhuber
个人官网:
https://people.idsia.ch/~juergen/
*********:
https://en.*********.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
■Geoffrey Hinton
*********:
https://en.*********.org/wiki/Geoffrey_Hinton
Google Scholar:
https://www.cs.toronto.edu/~hinton/
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
■Terry Sejnowski
个人官网:
https://www.salk.edu/scientist/terrence-sejnowski/
*********:
https://en.*********.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
■Michael Jordan
个人官网:
https://people.eecs.berkeley.edu/~jordan/
*********:
https://en.*********.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
■Peter Norvig
个人官网:
https://norvig.com/
*********:
https://en.*********.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
■Yoshua Bengio
个人官网:
https://www.iro.umontreal.ca/~bengioy/yoshua_en/
*********:
https://en.*********.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
■Ina Goodfellow
个人官网:
https://www.iangoodfellow.com/
*********:
https://en.*********.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
■Andrej Karpathy
个人官网:
https://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
■Richard Socher
个人官网:
https://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en
Interview:
https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
■Demis Hassabis
个人官网:
https://demishassabis.com/
*********:
https://en.*********.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
■Christopher Manning
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
■Fei-Fei Li
个人官网:
https://vision.stanford.edu/people.html
*********:
https://en.*********.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
■François Chollet
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
■Dan Jurafsky
个人官网:
https://web.stanford.edu/~jurafsky/
*********:
https://en.*********.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
■Oren Etzioni
个人官网:
https://allenai.org/team/orene/
*********:
https://en.*********.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机 构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
■OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
■DeepMind
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
■Google Research
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
■AWS AI
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
■facebook AI Research
官网:https://research.fb.com/category/facebook-ai-research-fair/
■Microsoft Research
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
■Baidu Research
官网:https://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
■IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
■AI2
官网:https://allenai.org/
Twitter:https://twitter.com/allenai_org
■Partnership on AI
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
视频课程
以下列出的是一些免费的视频课程和教程。
■Coursera
— Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
■Coursera
— Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
■Udacity
— Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
■Udacity
— Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
■Udacity
——Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
■Machine Learning (mathematicalmonk):
https://www.*******.com/playlist?list=PLD0F06AA0D2E8FFBA
■Practical Deep Learning For Coders
——Jeremy Howard & Rachel Thomas:
https://course.fast.ai/start.html
■Stanford CS231n
——Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.*******.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):https://cs231n.stanford.edu/
■Stanford CS224n
——Natural Language Processing with Deep Learning (Winter 2017) :
https://www.*******.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):https://web.stanford.edu/class/cs224n/
■Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
■Reinforcement Learning (David Silver):
https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
■Practical Machine Learning Tutorial with Python (sentdex):
https://www.*******.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
*******
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
■sentdex
(225K subscribers, 21M views):
https://www.*******.com/user/sentdex
■Artificial Intelligence A.I.
(7M views):
https://www.*******.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
■Siraj Raval
(140K subscribers, 5M views):
https://www.*******.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
■Two Minute Papers
(60K subscribers, 3.3M views):
https://www.*******.com/user/keeroyz
■DeepLearning.TV
(42K subscribers, 1.7M views):
https://www.*******.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
■Data School
(37K subscribers, 1.8M views):
https://www.*******.com/user/dataschool
■Machine Learning Recipes with Josh Gordon
(324K views):
https://www.*******.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
■Artificial Intelligence — Topic
(10K subscribers):
https://www.*******.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
■Allen Institute for Artificial Intelligence (AI2)
(1.6K subscribers, 69K views):
https://www.*******.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
■Machine Learning at Berkeley
(634 subscribers, 48K views):
https://www.*******.com/channel/UCXweTmAk9K-Uo9R6**fGtjg
■Understanding Machine Learning — Shai Ben-David
(973 subscribers, 43K views):
https://www.*******.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
■Machine Learning TV
(455 subscribers, 11K views):
https://www.*******.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博 客
■Andrej Karpathy
博客:https://karpathy.github.io/
Twitter:https://twitter.com/karpathy
■i am trask
博客:https://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
■Christopher Olah
博客:https://colah.github.io/
Twitter:https://twitter.com/ch402
■Top Bots
博客:https://www.topbots.com/
Twitter:https://twitter.com/topbots
■WildML
博客:https://www.wildml.com/
Twitter:https://twitter.com/dennybritz
■Distill
博客:https://distill.pub/
Twitter:https://twitter.com/distillpub
■Machine Learning Mastery
博客:https://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
■FastML
博客:https://fastml.com/
Twitter:https://twitter.com/fastml_extra
■Adventures in NI
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
■Sebastian Ruder
博客:https://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
■Unsupervised Methods
博客:https://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
■Explosion
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
■Tim Dettwers
博客:https://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
■When trees fall...
博客:https://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
■ML@B
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
■Robbie Allen:
https://medium.com/@robbieallen
■Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
■Frank Chen:
https://medium.com/@withfries2
■azeem:
https://medium.com/@azeem
■Sam DeBrule:
https://medium.com/@samdebrule
■Derrick Harris:
https://medium.com/@derrickharris
■Yitaek Hwang:
https://medium.com/@yitaek
■samim:
https://medium.com/@samim
■Paul Boutin:
https://medium.com/@Paul_Boutin
■Mariya Yao:
https://medium.com/@thinkmariya
■Rob May:
https://medium.com/@robmay
■Avinash Hindupur:
https://medium.com/@hindupuravinash
书 籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
——机器学习
■Understanding Machine Learning From Theory to Algorithms:
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
■Machine Learning Yearning:
https://www.mlyearning.org/
■A Course in Machine Learning:
https://ciml.info/
■Machine Learning:
https://www.intechopen.com/books/machine_learning
■Neural Networks and Deep Learning:
https://neuralnetworksanddeeplearning.com/
■Deep Learning Book:
https://www.deeplearningbook.org/
■Reinforcement Learning: An Introduction:
https://incompleteideas.net/sutton/book/the-book-2nd.html
■Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
——自然语言处理
■Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
■Natural Language Processing with Python:
https://www.nltk.org/book/
■An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
——数 学
■Introduction to Statistical Thought:
https://people.math.umass.edu/~lavine/Book/book.pdf
■Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
■Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/am**ook.mac.pdf
■Think Stats: Probability and Statistics for Python programmers:
https://greenteapress.com/wp/think-stats-2e/
■The Probability and Statistics Cookbook:
https://statistics.zone/
■Linear Algebra:
https://joshua.**cvt.edu/linearalgebra/book.pdf
■Linear Algebra Done Wrong:
https://www.math.brown.edu/~treil/papers/LADW/book.pdf
■Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
■Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
■Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
■Calculus I for Computer Science and Statistics Students:
https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,人工AI明星造梦网站你可以订阅如果你想跟进这些内容。
■Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
■Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
■Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
■Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
■Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
■Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
■Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
■Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
■Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
■Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
■/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
■/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
■/r/artificial (35K readers):
https://www.reddit.com/r/artificial
■/r/datascience (34K readers):
https://www.reddit.com/r/datascience
■/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
■/r/computervision (11K readers):
https://www.reddit.com/r/computervision
■/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
■/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
■/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
■/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
■Machine Learning (6K repos):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
■Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
■Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
播 客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
■ConcerningAI
官网:https://concerning.ai/
iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
■This Week in Machine Learning and AI
官网:https://twimlai.com/
iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
■The AI Podcast
官网:https://blogs.nvidia.com/ai-podcast/
iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
■Data Skeptic
官网:https://dataskeptic.com/
iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
■Linear Digressions
官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
■Partially Dervative
官网:https://partiallyderivative.com/
iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
■O'Reilly Data Show
官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
■Learning Machines 101
官网:https://www.learningmachines101.com/
iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
■The Talking Machines
官网:https://www.thetalkingmachines.com/
iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
■Artificial Intelligence in Industry
官网:https://techemergence.com/
iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
■Machine Learning Guide
官网:https://ocdevel.com/podcasts/machine-learning
iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
■The Exponential View:
https://www.getrevue.co/profile/azeem
■AI Weekly:
https://aiweekly.co/
■Deep Hunt:
https://deephunt.in/
■O’Reilly Artificial Intelligence Newsletter:
https://www.oreilly.com/ai/newsletter.html
■Machine Learning Weekly:
https://mlweekly.com/
■Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
■Machine Learnings:
https://subscribe.machinelearnings.co/
■Artificial Intelligence News:
https://aiweekly.co/
■When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
■WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
■Inside AI:
https://inside.com/technically-sentient
■Kurzweil AI:
https://www.kurzweilai.net/create-account
■Import AI:
https://jack-clark.net/import-ai/
■The Wild Week in AI:
https://www.getrevue.co/profile/wildml
■Deep Learning Weekly:
https://www.deeplearningweekly.com/
■Data Science Weekly:
https://www.datascienceweekly.org/
■KDnuggets Newsletter:
https://www.kdnuggets.com/news/subscribe.html?qst
会 议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
——学术会议
■NIPS (Neural Information Processing Systems):
https://nips.cc/
■ICML (International Conference on Machine Learning):
https://2017.icml.cc
■KDD (Knowledge Discovery and Data Mining):
https://www.kdd.org/
■ICLR (International Conference on Learning Representations):
https://www.iclr.cc/
ACL (Association for Computational Linguistics):
https://acl2017.org/
■EMNLP (Empirical Methods in Natural Language Processing):
https://emnlp2017.net/
■CVPR (Computer Vision and PatternRecognition):
https://cvpr2017.thecvf.com/
■ICCF(InternationalConferenceonComputerVision):
https://iccv2017.thecvf.com/
——专业会议
■O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
■Machine Learning Conference (MLConf):
https://mlconf.com/
■AI Expo (North America, Europe, World):
https://www.ai-expo.net/
■AI Summit:
https://theaisummit.com/
■AI Conference:
https://aiconference.ticketleap.com/helloworld/
论 文
——arXiv.org上特定领域论文集
■Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
■Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
■Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
■NLP:
https://arxiv.org/list/cs.CL/recent
■Computer Vision:
https://arxiv.org/list/cs.CV/recent
——Semantic Scholar搜索结果
■Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
■Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
■Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
https://www.arxiv-sanity.com/
---------------------------------------
ImageQ:专业的大数据服务应用平台
登录www.imageq.cn,免费申请【产品试用】
相关推荐
-
- 海尔兄弟AI创作赛,创作ai网页
-
虽然我们常常听歌但是我们可能很少注意其实歌词里面含有太多的科普知识海尔兄弟AI创作赛了涉及到诗词历史、数地物化等全方位的知识体系看完感觉当年学习不必那么费力的只需要听歌就行了呢 东汉末年分三国,战火连天不休。……曹操不啰嗦,一心要拿荆州。...
-
2025-07-17 14:30 DouJia
-
- ai会不会威胁到人类生存,AI教父称30年内AI有几率致人类灭亡
-
如今AI教父称30年内AI有几率致人类灭亡的移动互联网技术日渐强大,虽然还有很多细节没有被解决,但就现在最火的人工智能来说,已经引起AI教父称30年内AI有几率致人类灭亡了不少学者的担心,其中就包括霍金。霍金早在2015年时就向世界发出...
-
2025-07-17 07:30 DouJia
-
- 关于www.388ai.com的信息
-
1、siliconvalleyfashionweektickets9www.388ai.com?aff=oddtdtcreator价值$388VVIP票已售罄!感谢目www.388ai.com;每日更新全网企业校园招聘动态可以在校招网...
-
2025-07-17 00:30 DouJia
- 人工ai明星造梦网站有哪些,人工AI明星造梦网站
-
2000年早期,RobbieAllen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quor...
-
- 百度文库AI助手(百度文库ai助手思维导图生成)
-
新手微商怎么找客源?做微商微信怎么加人加好友做推广!顶峰金牌讲师,实战导师王小川一对一的指导你!教你如何让需要你产品的客户主动加你好友。让你的微信2个月加满5000+的精准客户!不要再乱加人了!学习方法才是王道,导师微信:1768227...
-
2025-07-16 14:30 DouJia
-
- 一键ai绘画(一键ai绘画app下载)
-
专注于人像绘画一键ai绘画的AI生成器采用先进的人脸识别技术和深度学习算法,将上传的照片转化为精美人像生成的细节丰富逼真度高,支持自定义风格和背景小冰AI绘画由微软研发,利用大量图像数据和深度学习模型生成多种风格的绘画作品生成画面风格多样...
-
2025-07-16 07:30 DouJia
-
- AI生成马斯克婴儿照被疯传(盘点马斯克的疯狂预测ai机器人和太空旅行)
-
1、1被禁言AI生成马斯克婴儿照被疯传的原因是因为中国版马斯克本身容易引起歧义,他的很多行为也存在真实性的问题2在现实生活当中,AI生成马斯克婴儿照被疯传我们其实可以看到很多长得非常像的人,有些普通人也会撞脸明星和偶像这种情况本身非常正...
-
2025-07-16 00:30 DouJia
-
- 3dai合成主播,ai合成主播软件汉化版
-
1、虚拟人概念4日盘中发力走高3dai合成主播,截至发稿,蓝色光标大涨超15%,贵广网络湖北广电博瑞传播等涨停,广西广电中文在线华策影视等涨约7%,星期六风语筑涨约6%,捷成股份涨近4%据悉,从中央到地方媒体,引入虚拟主播也成为近年来科技...
-
2025-07-15 21:30 DouJia
-
- 松鼠ai人工智能教育,松鼠ai人工智能教育怎么样可以买回来在家里学吗?
-
一、公司简介 北京普巴教育科技有限公司是一家高度专注于教育松鼠ai人工智能教育的互联网高科技公司。十多年来公司用“机器人”的人工智能方式精细准确地描述脑神经,左右小中脑潜能开发,形象思维步步定位,构建青少年自主创新的智慧模式,把神经训...
-
2025-07-15 14:30 DouJia
-
- ai导出内存不足(ai导出显示内存不足无法完成操作)
-
当AI导出时遇到内存不足的问题ai导出内存不足,可以采取以下措施来解决1更改AI暂存盘位置对于Mac用户打开AdobeIllustratorai导出内存不足,点击顶部菜单栏的“AdobeIllustrator”,选择“首选项”,在首...
-
2025-07-15 07:30 DouJia
-
- ai一键去除,AI一键去除衣物网站
-
表演者AI一键去除衣物网站:毒辣辣的表妹拂樱师幸亏他挂了 (音乐起--) 樱:大家注意了,挂总到! 挂:恩,恩,停! 樱:怎么啦AI一键去除衣物网站? 挂:都说了,AI一键去除衣物网站我们现在做大了,是集团娱乐公司,你怎么...
-
2025-07-15 00:30 DouJia
-
- ai文件用什么软件打开,ai文件怎么打开
-
在日常工作中,大家接触最多ai文件用什么软件打开的办公软件就是Office三件套:Word、Excel、PowerPoint。 而Office三件套一般都是需要打开以后才能知道里面的内容。对于名字接近的文件,如果需要一个个打开进行查找,这...
-
2025-07-14 21:30 DouJia
-
- 百度热搜
- 新浪热搜
- 1 看中国城市工作的变与不变
- 2 热 最新!你的工资不能少于这个数
- 3 女童患重病想退年卡 景区“仅退款”
- 4 为何说中国在“链”接世界
- 5 热 伊朗外长:感谢中方
- 6 韩国女游客在越南暴打当地女子
- 7 某科技公司未落实网安保护义务被罚
- 8 赫敏扮演者因超速被禁止驾驶6个月
- 9 热 印航机长关闭燃油开关或直接导致坠机
- 10 新 伊利链博会AI互动演讲
- 最新抖音
-
官方抖音软件下载,抖音app官网免费下载17.81
在现代社会巨大抖音app官网免费下载17.81的竞争压力下抖音app官网免费下载17.81,长时...
抖音充值抖币1:10(抖音充值抖币官网入口)
之前有一篇文章,叫做《被抖音毁掉的年轻人》。大概意思是说,短视频、微博、微信占据了年轻人太多时间...
抖音晨曦姐姐男生照,抖音晨曦姐姐男生照片真实
斗玩网(d.chinaz.com)原创:近日抖音上有一位叫摇呼啦圈的玩家火抖音晨曦姐姐男生照了抖...
抖音名称昵称男生,抖音名称.昵称男
无论是对于已经出生的宝宝抖音名称.昵称男,还是即将出生的宝宝抖音名称.昵称男,对他们而言抖音名称...
抖音头像男士专用2023款励志,抖音头像男士专用2023款
安全目视化管理抖音头像男士专用2023款: 1、安全帽佩戴不规范,都未系好安全帽帽带;...
抖音外卖概念股龙头,抖音外卖概念股
一、投资亮点: 金证股份(600446)是国内最大抖音外卖概念股的金融证券软件企业,公司一...
抖音名字大全男繁体字,2020抖音火爆昵称繁体字男
1、网站的互动性。网站越来越注重网站的互动性抖音名字大全男繁体字了抖音名字大全男繁体字,因为这样...
抖音的晨曦姐姐怎么了,抖音晨曦姐姐到底是男是女
《汉宫春晓图》是中国十大传世名画之一。中国重彩仕女第一长卷。明代仇英作抖音晨曦姐姐到底是男是女,...
- 最新快手
-
快手下载的视频怎么去掉快手号,快手下载视频怎么去掉快手号水印
现在我要给大家介绍这样一款游戏快手下载的视频怎么去掉快手号,这款游戏自从推出就登上了各大平台快手...
快手小游戏破解版游戏大全(快手小游戏破解挂)
快手小游戏破解版游戏大全我的世界中国版红石发射器合成攻略中国版红石发射器怎么合成?红石发射器是...
快手下载最新版本2023红包版,快手下载最新版本2023
第二步快手下载最新版本2023,打开豌豆荚搜索界面搜索“快手”快手下载最新版本2023,然后在搜索结...
快手下载别人作品对方知道吗,快手下载别人作品会不会有提醒
1、1快手下载人家作品知道快手下载别人作品对方知道吗,因为会有下载记录,只要访问别人的主页查看作品的...
下载快手app(下载快手app下载)
打开手机的浏览器下载快手app,进入快手的官方首页在官方首页上,通常会有下载快手APP的链接或按钮点...
快手软件取关(快手软件取关软件)
现在快手软件取关我要给大家介绍这样一款游戏快手软件取关,这款游戏自从推出就登上了各大平台的下载榜...
快手app下载最新版202,下载快手 最新版
快手app下载最新版202我们都知道手机游戏尤其是网络游戏已经大面积的普及到了消费者的生活中来快...
快手市值多少亿2023(快手市值多少亿人民币2023)
1、四财务状况增长表现2023年多数企业实现增长,快手和爱奇艺净利润大幅上升,快手一季度净利润增长...
- 热门关注