mudanai官方网站,ai官方网站
DouJia 2025-07-12 00:30 368 浏览
2000年早期ai官方网站,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,*******还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,ai官方网站你将会对人工智能和机器学习有一个基本的认知。
资源目录:
□ 知名研究者
□ 研究机构
□ 视频课程
□ *******
□ 博客
□ 媒体作家
□ 书籍
□ Quora主题栏
□ Github库
□ 播客
□ 实事通讯媒体
□ 会议
□ 论文
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,****链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
■Sebastian Thrun
个人官网:
https://robots.stanford.edu/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJ&hl=en&oi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
■Yann LeCun
个人官网:
https://yann.lecun.com/
*********:
https://en.*********.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Nando de Freitas
个人官网:
https://www.cs.ubc.ca/~nando/
*********:
https://en.*********.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Andrew Ng
个人官网:
https://www.andrewng.org/
*********:
https://en.*********.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Daphne Koller
个人官网:
https://ai.stanford.edu/users/koller/
*********:
https://en.*********.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
■Adam Coates
个人官网:
https://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Jürgen Schmidhuber
个人官网:
https://people.idsia.ch/~juergen/
*********:
https://en.*********.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
■Geoffrey Hinton
*********:
https://en.*********.org/wiki/Geoffrey_Hinton
Google Scholar:
https://www.cs.toronto.edu/~hinton/
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
■Terry Sejnowski
个人官网:
https://www.salk.edu/scientist/terrence-sejnowski/
*********:
https://en.*********.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
■Michael Jordan
个人官网:
https://people.eecs.berkeley.edu/~jordan/
*********:
https://en.*********.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJ&hl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
■Peter Norvig
个人官网:
https://norvig.com/
*********:
https://en.*********.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJ&hl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
■Yoshua Bengio
个人官网:
https://www.iro.umontreal.ca/~bengioy/yoshua_en/
*********:
https://en.*********.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
■Ina Goodfellow
个人官网:
https://www.iangoodfellow.com/
*********:
https://en.*********.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
■Andrej Karpathy
个人官网:
https://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
■Richard Socher
个人官网:
https://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJ&hl=en
Interview:
https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
■Demis Hassabis
个人官网:
https://demishassabis.com/
*********:
https://en.*********.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJ&hl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
■Christopher Manning
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
■Fei-Fei Li
个人官网:
https://vision.stanford.edu/people.html
*********:
https://en.*********.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJ&hl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
■François Chollet
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJ&hl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
■Dan Jurafsky
个人官网:
https://web.stanford.edu/~jurafsky/
*********:
https://en.*********.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJ&hl=en
■Oren Etzioni
个人官网:
https://allenai.org/team/orene/
*********:
https://en.*********.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJ&hl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机 构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
■OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
■DeepMind
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
■Google Research
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
■AWS AI
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
■facebook AI Research
官网:https://research.fb.com/category/facebook-ai-research-fair/
■Microsoft Research
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
■Baidu Research
官网:https://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
■IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
■AI2
官网:https://allenai.org/
Twitter:https://twitter.com/allenai_org
■Partnership on AI
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
视频课程
以下列出的是一些免费的视频课程和教程。
■Coursera
— Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
■Coursera
— Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
■Udacity
— Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
■Udacity
— Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
■Udacity
——Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
■Machine Learning (mathematicalmonk):
https://www.*******.com/playlist?list=PLD0F06AA0D2E8FFBA
■Practical Deep Learning For Coders
——Jeremy Howard & Rachel Thomas:
https://course.fast.ai/start.html
■Stanford CS231n
——Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.*******.com/watch?v=g-PvXUjD6qg&list=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):https://cs231n.stanford.edu/
■Stanford CS224n
——Natural Language Processing with Deep Learning (Winter 2017) :
https://www.*******.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):https://web.stanford.edu/class/cs224n/
■Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
■Reinforcement Learning (David Silver):
https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
■Practical Machine Learning Tutorial with Python (sentdex):
https://www.*******.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5v&v=OGxgnH8y2NM
*******
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
■sentdex
(225K subscribers, 21M views):
https://www.*******.com/user/sentdex
■Artificial Intelligence A.I.
(7M views):
https://www.*******.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
■Siraj Raval
(140K subscribers, 5M views):
https://www.*******.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
■Two Minute Papers
(60K subscribers, 3.3M views):
https://www.*******.com/user/keeroyz
■DeepLearning.TV
(42K subscribers, 1.7M views):
https://www.*******.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
■Data School
(37K subscribers, 1.8M views):
https://www.*******.com/user/dataschool
■Machine Learning Recipes with Josh Gordon
(324K views):
https://www.*******.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
■Artificial Intelligence — Topic
(10K subscribers):
https://www.*******.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
■Allen Institute for Artificial Intelligence (AI2)
(1.6K subscribers, 69K views):
https://www.*******.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
■Machine Learning at Berkeley
(634 subscribers, 48K views):
https://www.*******.com/channel/UCXweTmAk9K-Uo9R6**fGtjg
■Understanding Machine Learning — Shai Ben-David
(973 subscribers, 43K views):
https://www.*******.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
■Machine Learning TV
(455 subscribers, 11K views):
https://www.*******.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博 客
■Andrej Karpathy
博客:https://karpathy.github.io/
Twitter:https://twitter.com/karpathy
■i am trask
博客:https://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
■Christopher Olah
博客:https://colah.github.io/
Twitter:https://twitter.com/ch402
■Top Bots
博客:https://www.topbots.com/
Twitter:https://twitter.com/topbots
■WildML
博客:https://www.wildml.com/
Twitter:https://twitter.com/dennybritz
■Distill
博客:https://distill.pub/
Twitter:https://twitter.com/distillpub
■Machine Learning Mastery
博客:https://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
■FastML
博客:https://fastml.com/
Twitter:https://twitter.com/fastml_extra
■Adventures in NI
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
■Sebastian Ruder
博客:https://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
■Unsupervised Methods
博客:https://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
■Explosion
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
■Tim Dettwers
博客:https://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
■When trees fall...
博客:https://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
■ML@B
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
■Robbie Allen:
https://medium.com/@robbieallen
■Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
■Frank Chen:
https://medium.com/@withfries2
■azeem:
https://medium.com/@azeem
■Sam DeBrule:
https://medium.com/@samdebrule
■Derrick Harris:
https://medium.com/@derrickharris
■Yitaek Hwang:
https://medium.com/@yitaek
■samim:
https://medium.com/@samim
■Paul Boutin:
https://medium.com/@Paul_Boutin
■Mariya Yao:
https://medium.com/@thinkmariya
■Rob May:
https://medium.com/@robmay
■Avinash Hindupur:
https://medium.com/@hindupuravinash
书 籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
——机器学习
■Understanding Machine Learning From Theory to Algorithms:
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
■Machine Learning Yearning:
https://www.mlyearning.org/
■A Course in Machine Learning:
https://ciml.info/
■Machine Learning:
https://www.intechopen.com/books/machine_learning
■Neural Networks and Deep Learning:
https://neuralnetworksanddeeplearning.com/
■Deep Learning Book:
https://www.deeplearningbook.org/
■Reinforcement Learning: An Introduction:
https://incompleteideas.net/sutton/book/the-book-2nd.html
■Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
——自然语言处理
■Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
■Natural Language Processing with Python:
https://www.nltk.org/book/
■An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
——数 学
■Introduction to Statistical Thought:
https://people.math.umass.edu/~lavine/Book/book.pdf
■Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
■Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/am**ook.mac.pdf
■Think Stats: Probability and Statistics for Python programmers:
https://greenteapress.com/wp/think-stats-2e/
■The Probability and Statistics Cookbook:
https://statistics.zone/
■Linear Algebra:
https://joshua.**cvt.edu/linearalgebra/book.pdf
■Linear Algebra Done Wrong:
https://www.math.brown.edu/~treil/papers/LADW/book.pdf
■Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
■Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
■Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
■Calculus I for Computer Science and Statistics Students:
https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。
■Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
■Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
■Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
■Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
■Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
■Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
■Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
■Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
■Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
■Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
■/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
■/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
■/r/artificial (35K readers):
https://www.reddit.com/r/artificial
■/r/datascience (34K readers):
https://www.reddit.com/r/datascience
■/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
■/r/computervision (11K readers):
https://www.reddit.com/r/computervision
■/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
■/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
■/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
■/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
■Machine Learning (6K repos):
https://github.com/search?o=desc&q=topic%3Amachine-learning+&s=stars&type=Repositories&utf8=%E2%9C%93
■Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learning&type=Repositories
■Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflow&type=Repositories
■NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93&q=topic%3Anlp&type=Repositories
播 客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
■ConcerningAI
官网:https://concerning.ai/
iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
■This Week in Machine Learning and AI
官网:https://twimlai.com/
iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
■The AI Podcast
官网:https://blogs.nvidia.com/ai-podcast/
iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
■Data Skeptic
官网:https://dataskeptic.com/
iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
■Linear Digressions
官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
■Partially Dervative
官网:https://partiallyderivative.com/
iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
■O'Reilly Data Show
官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
■Learning Machines 101
官网:https://www.learningmachines101.com/
iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
■The Talking Machines
官网:https://www.thetalkingmachines.com/
iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
■Artificial Intelligence in Industry
官网:https://techemergence.com/
iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
■Machine Learning Guide
官网:https://ocdevel.com/podcasts/machine-learning
iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
■The Exponential View:
https://www.getrevue.co/profile/azeem
■AI Weekly:
https://aiweekly.co/
■Deep Hunt:
https://deephunt.in/
■O’Reilly Artificial Intelligence Newsletter:
https://www.oreilly.com/ai/newsletter.html
■Machine Learning Weekly:
https://mlweekly.com/
■Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
■Machine Learnings:
https://subscribe.machinelearnings.co/
■Artificial Intelligence News:
https://aiweekly.co/
■When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
■WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
■Inside AI:
https://inside.com/technically-sentient
■Kurzweil AI:
https://www.kurzweilai.net/create-account
■Import AI:
https://jack-clark.net/import-ai/
■The Wild Week in AI:
https://www.getrevue.co/profile/wildml
■Deep Learning Weekly:
https://www.deeplearningweekly.com/
■Data Science Weekly:
https://www.datascienceweekly.org/
■KDnuggets Newsletter:
https://www.kdnuggets.com/news/subscribe.html?qst
会 议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
——学术会议
■NIPS (Neural Information Processing Systems):
https://nips.cc/
■ICML (International Conference on Machine Learning):
https://2017.icml.cc
■KDD (Knowledge Discovery and Data Mining):
https://www.kdd.org/
■ICLR (International Conference on Learning Representations):
https://www.iclr.cc/
ACL (Association for Computational Linguistics):
https://acl2017.org/
■EMNLP (Empirical Methods in Natural Language Processing):
https://emnlp2017.net/
■CVPR (Computer Vision and PatternRecognition):
https://cvpr2017.thecvf.com/
■ICCF(InternationalConferenceonComputerVision):
https://iccv2017.thecvf.com/
——专业会议
■O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
■Machine Learning Conference (MLConf):
https://mlconf.com/
■AI Expo (North America, Europe, World):
https://www.ai-expo.net/
■AI Summit:
https://theaisummit.com/
■AI Conference:
https://aiconference.ticketleap.com/helloworld/
论 文
——arXiv.org上特定领域论文集
■Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
■Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
■Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
■NLP:
https://arxiv.org/list/cs.CL/recent
■Computer Vision:
https://arxiv.org/list/cs.CV/recent
——Semantic Scholar搜索结果
■Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22&sort=relevance&ae=false
■Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22&sort=relevance&ae=false
■Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22&sort=relevance&ae=false
■Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22&sort=relevance&ae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
https://www.arxiv-sanity.com/
---------------------------------------
ImageQ:专业的大数据服务应用平台
登录www.imageq.cn,免费申请【产品试用】
相关推荐
-
- kimi是谁发明的,KIMI人工智能是哪个公司的
-
电话出售是现在贸易范畴开展最快、运用最多KIMI人工智能是哪个公司的的一种营销方式,其长处是相对低KIMI人工智能是哪个公司的的获客本钱、较为精准KIMI人工智能是哪个公司的的需求挑选,但是电话出售形式在以前不断存在无法处理的毛病,即相...
-
2025-08-31 07:30 DouJia
-
- 李世石退役战赢ai,李世石退役后干什么
-
近日李世石退役战赢ai,一位神秘的围棋高手引发了一场海啸般的轰动,从2016年12月29日晚起,一个名为“Master”、标注为韩国九段的“网络棋手”出现在了弈城网和野狐网,接连发动了一场又一场“围棋上帝”亲临般的征战。 截至到201...
-
2025-08-31 00:30 DouJia
-
- sunoai,sunoAI
-
关注并置顶“畅游马来西亚”体验一个目sunoai的地的千种玩法 经过卖力地攀爬跨越大片原始森林映入眼帘的是“飞流直下三千尺”的壮观瀑布水花时而溅在满是汗水的脸上如此令人舒畅大马自然环境可是出了名的好,接下来就带大家去看看全马最棒的8个瀑布...
-
2025-08-30 21:30 DouJia
-
- 百度ai大会(百度ai大会最小开发者)
-
亚马逊的无人机、京东的无人仓、阿里的无人超市,百度的无人驾驶,西门子的无人工厂……层出不穷的“无人技术”令人眼花缭乱。 人们在感叹科学技术大迈步的同时也对未来世界充满了焦虑与不确定性:“无人时代”的来临,人类能做些什么? 从上个...
-
2025-08-30 14:30 DouJia
-
- 97.ai.com的简单介绍
-
1、6AiibwS4HC92g?pwd=1234以上是独步天下紫袍97集王星辰全集未删减高清版百度网盘免费下载地址链接介绍独步天下紫袍97集王星辰。2、整个消费生命周期无疑会成为消费金融行业下一步发展的一个重点作为国内领先的互联网消...
-
2025-08-25 00:30 DouJia
-
- create2024百度ai开发者大会(百度ai开发者平台)
-
运营商世界网丁浩/文 日前,百度举办create2024百度ai开发者大会了AI开发者大会,大会上李彦宏在数千人面前,演示create2024百度ai开发者大会了无人驾驶汽车。会后,舆论的热点出现了“李彦宏乘无人车上路”,热议的焦点却...
-
2025-08-24 21:30 DouJia
-
- AI手机来了(ai来电助手)
-
【PConline评测】伴随国产品牌的崛起AI手机来了,消费者对于手机配置的敏感与日俱增。时至今日,配置不再是“一招鲜”。想成为爆歀,出色的用户体验和均衡的配置缺一不可。在这个手机AI普及的节点,海信推出了海信AI手机H20。到底H2...
-
2025-08-24 14:30 DouJia
-
- dota地图下载6.77ai,dota地图683ai中文版
-
上U9点DOTA专区dota地图下载6.77ai,地图下载,里面有一堆地图其中有6。首先,玩家需要确保下载并使用的是带有AI功能的地图版本,如DotAv677AI117中文版等游戏开始前输入指令玩家可以在游戏开始前输入rdquoa...
-
2025-08-24 07:30 DouJia
-
- 美七777视频被AI换衣,波音777客机起火原因
-
菲德尔·卡斯特罗美七777视频被AI换衣的资料照片。观众在一幅卡斯特罗美七777视频被AI换衣的照片前拍照。2003年美七777视频被AI换衣,卡斯特罗在阿根廷出席阿根廷总统就职仪式的资料照片。卡斯特罗在古巴拉丁美洲棒球场与民...
-
2025-08-24 00:30 DouJia
-
- ai郭敬明(ai郭敬明微电影主题)
-
安宁客运站人才市场 声明:本微信信平台所展示ai郭敬明的信息由招工单位提供ai郭敬明,内容的真实性、准确性与合法性均由招工单位负责! 企业紧急招聘信息 安宁蒂莲雅酒店招聘 客房服务员数名:女,待遇2200元/月+奖金(无夜班...
-
2025-08-22 14:30 DouJia
-
- 视频由AI技术合成是什么软件?,视频由ai技术合成是什么软件
-
Sonyvegas是一款专业视频由ai技术合成是什么软件的视频编辑软件视频由ai技术合成是什么软件,由sony公司出品视频由ai技术合成是什么软件,软件自身具有强大的视频编辑能力和强大的后期处理功能,用户可以根据自己的需求对视频素材...
-
2025-08-22 00:30 DouJia
-
- taylorswift高清图片,taylorswiftai照片
-
摘要今日美国娱乐圈最大taylorswiftai照片的消息taylorswiftai照片,莫过于泰勒与“洛基”汤姆-希德勒斯顿的恋情曝光。而泰勒与汤姆的拥吻、牵手照曝光后taylorswiftai照片,友人也转述凯文心情,直言“他觉得很...
-
2025-08-21 21:30 DouJia
- 会员中心
-
- 百度热搜
- 新浪热搜
- 最新抖音
-
官方抖音软件下载,抖音app官网免费下载17.81
在现代社会巨大抖音app官网免费下载17.81的竞争压力下抖音app官网免费下载17.81,长时...
抖音充值抖币1:10(抖音充值抖币官网入口)
之前有一篇文章,叫做《被抖音毁掉的年轻人》。大概意思是说,短视频、微博、微信占据了年轻人太多时间...
抖音晨曦姐姐男生照,抖音晨曦姐姐男生照片真实
斗玩网(d.chinaz.com)原创:近日抖音上有一位叫摇呼啦圈的玩家火抖音晨曦姐姐男生照了抖...
抖音名称昵称男生,抖音名称.昵称男
无论是对于已经出生的宝宝抖音名称.昵称男,还是即将出生的宝宝抖音名称.昵称男,对他们而言抖音名称...
抖音头像男士专用2023款励志,抖音头像男士专用2023款
安全目视化管理抖音头像男士专用2023款: 1、安全帽佩戴不规范,都未系好安全帽帽带;...
抖音外卖概念股龙头,抖音外卖概念股
一、投资亮点: 金证股份(600446)是国内最大抖音外卖概念股的金融证券软件企业,公司一...
抖音名字大全男繁体字,2020抖音火爆昵称繁体字男
1、网站的互动性。网站越来越注重网站的互动性抖音名字大全男繁体字了抖音名字大全男繁体字,因为这样...
抖音的晨曦姐姐怎么了,抖音晨曦姐姐到底是男是女
《汉宫春晓图》是中国十大传世名画之一。中国重彩仕女第一长卷。明代仇英作抖音晨曦姐姐到底是男是女,...
- 最新快手
-
快手下载的视频怎么去掉快手号,快手下载视频怎么去掉快手号水印
现在我要给大家介绍这样一款游戏快手下载的视频怎么去掉快手号,这款游戏自从推出就登上了各大平台快手...
快手小游戏破解版游戏大全(快手小游戏破解挂)
快手小游戏破解版游戏大全我的世界中国版红石发射器合成攻略中国版红石发射器怎么合成?红石发射器是...
快手下载最新版本2023红包版,快手下载最新版本2023
第二步快手下载最新版本2023,打开豌豆荚搜索界面搜索“快手”快手下载最新版本2023,然后在搜索结...
快手下载别人作品对方知道吗,快手下载别人作品会不会有提醒
1、1快手下载人家作品知道快手下载别人作品对方知道吗,因为会有下载记录,只要访问别人的主页查看作品的...
下载快手app(下载快手app下载)
打开手机的浏览器下载快手app,进入快手的官方首页在官方首页上,通常会有下载快手APP的链接或按钮点...
快手软件取关(快手软件取关软件)
现在快手软件取关我要给大家介绍这样一款游戏快手软件取关,这款游戏自从推出就登上了各大平台的下载榜...
快手app下载最新版202,下载快手 最新版
快手app下载最新版202我们都知道手机游戏尤其是网络游戏已经大面积的普及到了消费者的生活中来快...
快手市值多少亿2023(快手市值多少亿人民币2023)
1、四财务状况增长表现2023年多数企业实现增长,快手和爱奇艺净利润大幅上升,快手一季度净利润增长...
- 热门关注